Friday, April 25, 2014

Moment Fitting quadrature on implicit surface (Muller)

I found an error in my Surface integration weights calculations. In some triangles the direction of the normal was found wrong.
Instead of using distance function at location of the normal, I should make sure dot product of normal vector at each quadrature point with normal of interface edge is positive.

Update: fixed above error.

Description. 
I'm integrating f(x) over the zero level set of a narrow-band region using the quadrature method by Muller. f(x) is either a constant function or $cos(9 \theta)$ in 1st quadrant.

The scheme produced should be precise for polynomials up to 2nd order in each triangle, so the total error should be of order O(h^2). 

Nodes are taken from a 13-point Gaussian quadrature over triangles. 1-D integration over the edges is done using Gaussian rule precise for polynomials of order 9.

Below table is for mesh refinements.

h Time       |  f=1 error                             f=$cos(9 \theta)$ error 
---------------------------------------------------------------------------------------
0.100000    0:0:0s  |  2.95e-06                   9.92e-05    
0.050000    0:0:1s  |  4.22e-09         9.45 3.87e-06 4.68 
0.025000    0:0:1s  |  1.01e-08        -1.25 5.29e-07 2.87 
0.012500    0:0:2s  |  6.17e-10         4.03 7.47e-09 6.15 
0.006250    0:0:4s  |  1.17e-10         2.40 2.38e-09 1.65 
0.003125    0:0:7s  |  4.90e-12         4.57 3.44e-10 2.79 
0.001563   0:0:15s |  3.48e-13         3.82 1.28e-11 4.74 
0.000781   0:0:31s |  7.99e-15         5.44 2.11e-13 5.93 
-----------------------------------------------------------------------------------------

I'm somewhat puzzled how to interpret these results. ...

No comments:

Post a Comment